The Complexity of Solving Stochastic Games on Graphs
نویسندگان
چکیده
We consider some well-known families of two-player zero-sum perfect-information stochastic games played on finite directed graphs. Generalizing and unifying results of Liggett and Lippman, Zwick and Paterson, and Chatterjee and Henzinger, we show that the following tasks are polynomial-time (Turing) equivalent. – Solving stochastic parity games, – Solving simple stochastic games, – Solving stochastic terminal-payoff games with payoffs and probabilities given in unary, – Solving stochastic terminal-payoff games with payoffs and probabilities given in binary, – Solving stochastic mean-payoff games with rewards and probabilities given in unary, – Solving stochastic mean-payoff games with rewards and probabilities given in binary, – Solving stochastic discounted-payoff games with discount factor, rewards and probabilities given in binary. It is unknown whether these tasks can be performed in polynomial time. In the above list, “solving” may mean either quantitatively solving a game (computing the values of its positions) or strategically solving a game (computing an optimal strategy for each player). In particular, these two tasks are polynomial-time equivalent for all the games listed above. We also consider a more refined notion of equivalence between quantitatively and strategically solving a game. We exhibit a linear time algorithm that given a simple stochastic game or a terminal-payoff game and the values of all positions of that game, computes a pair of optimal strategies. Consequently, for any restriction one may put on the simple stochastic game model, quantitatively solving is polynomial-time equivalent to strategically solving the resulting class of games.
منابع مشابه
Simple Stochastic Parity Games
Many verification, planning, and control problems can be modeled as games played on state-transition graphs by one or two players whose conflicting goals are to form a path in the graph. The focus here is on simple stochastic parity games, that is, two-player games with turn-based probabilistic transitions and ω-regular objectives formalized as parity (Rabin chain) winning conditions. An effici...
متن کاملGames through Nested Fixpoints
In this paper we consider two-player zero-sum payoff games on finite graphs, both in the deterministic as well as in the stochastic setting. In the deterministic setting, we consider total-payoff games which have been introduced as a refinement of mean-payoff games [18, 10]. In the stochastic setting, our class is a turn-based variant of liminf-payoff games [15, 16, 4]. In both settings, we pro...
متن کاملOn the computational complexity of solving stochastic mean-payoff games
We consider some well known families of two-player, zero-sum, turn-based, perfect information games that can be viewed as specical cases of Shapley’s stochastic games. We show that the following tasks are polynomial time equivalent: • Solving simple stochastic games, • solving stochastic mean-payoff games with rewards and probabilities given in unary, and • solving stochastic mean-payoff games ...
متن کاملSolving a Two-Period Cooperative Advertising Problem Using Dynamic Programming
Cooperative advertising is a cost-sharing mechanism in which a part of retailers' advertising investments are financed by the manufacturers. In recent years, investment among advertising options has become a difficult marketing issue. In this paper, the cooperative advertising problem with advertising options is investigated in a two-period horizon in which the market share in the second period...
متن کاملExact Algorithms for Solving Stochastic Games
Shapley’s discounted stochastic games, Everett’s recursive games and Gillette’s undiscounted stochastic games are classical models of game theory describing two-player zero-sum games of potentially infinite duration. We describe algorithms for exactly solving these games. When the number of positions of the game is constant, our algorithms run in polynomial time.
متن کامل